Планета магии. Заговоры, амулеты, гадания

Свободная энергия Гиббса. Направление химического процесса. Энергия гиббса химической реакции

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (9)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (10)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG >

· если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DG обр. , измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG 0 обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG 0 обр.298 веществ приводятся в справочниках.



Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG 0 298 = S(n i . DG i 0 298) пр. - S(n i . D G i 0 298) исх. . (11)

Свободная энергия Гельмгольца

Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F):

DF = DU – TDS.

Знак изменения свободной энергии Гельмгольца DF и ее величина при V = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гельмгольца, т.е. D F < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. D F > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

· если D F = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при V=const идут с уменьшением свободной энергии Гельмгольца. Этот вывод справедлив как для изолированных, так и для открытых систем.


ХИМИЧЕСКАЯ КИНЕТИКА

Основные понятия химической кинетики

Химическая кинетика – раздел химии, изучающий скорости и механизмы химических реакций.

Различают гомогенные и гетерогенные химические реакции:

· гомогенные реакции протекают в однородной среде во всем объеме системы (это реакции в растворах, в газовой фазе);

· гетерогенные реакции протекают в неоднородной среде, на границе раздела фаз (горение твердого или жидкого вещества).

Основным понятием химической кинетики является понятие о скорости химической реакции. Под скоростью химической реакции понимается число элементарных актов взаимодействия в единицу времени в единице объема (если реакция гомогенная) или число элементарных актов взаимодействия в единицу времени на единицу поверхности раздела фаз (если реакция гетерогенная).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных веществ или конечных продуктов реакции в единицу времени и выражают: для гомогенных реакций – моль/л·с (моль/м 3 ·с и т.д.), для гетерогенных – моль/см 2 ·с (моль/м 2 ·с).



Различают среднюю и истинную (мгновенную) скорость реакции. Из зависимостей, представленных на рис. 6.1, следует: при химическом взаимодействии концентрация каждого из исходных веществ (кривая 1) уменьшается во времени (С 2 <С 1 , DС<0), а концентрация каждого из продуктов реакции (кривая 2) возрастает (С` 2 >С` 1 , DС>0). Следовательно, среднюю скорость (V ср) в интервале времени t 1 ÷ t 2 можно выразить следующим образом:

V ср =± (С 2 – С 1)/(t 2 - t 1) = ± DС/Dt. (1)

Средняя скорость является грубым приближением, т.к. в интервале времени t 1 ÷ t 2 она не остается постоянной. Истинная или мгновенная скорость в момент времени t (V) определяется следующим образом:

V = lim (± DС/D t) = ± dС/dt = ± С" t = tg a, (2)

т.е. мгновенная скорость химической реакции равна первой производной от концентрации одного из веществ по времени и определяется как tg угла наклона касательной к кривой С А = f (t) в точке, соответствующей данному моменту времени t: dС/dt = tga.

Скорость химической реакции зависит от различных факторов:

Природы реагирующих веществ;

Их концентрации;

Температуры протекания процесса;

Присутствия катализатора.

Рассмотрим более подробно влияние каждого из перечисленных факторов на скорость химической реакции.

Уравнения химических реакций, в которых указаны их тепловые эффекты, называются термохимическими уравнениями.

Тепловые эффекты химических реакций - теплота, выделенная или поглощенная термодинамической системой при протекании в ней химической реакции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а температуры реагентов и продуктов равны.

При постоянном давлении (p ) и отсутствии других видов работ кроме работы против внешнего давления из первого закона термодинамики можно получить:

ΔQ = ΔH = ΔU + p ΔV .

Таким образом тепловой эффект химической реакции равен ΔН , которая в термодинамике носит название энтальпия .

Из первого закона термодинамики следует, что тепловой эффект химической реакции (при р = const и Т = const) не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции (закон Г. И. Гесса).

Термохимические расчеты. В основе большинства термохимических расчетов лежит следствие из закона Гесса: тепловой эффект химической реакции равен сумме теплот (энтальпий) образования продуктов реакции (ΔН ) за вычетом суммы теплот (энтальпий) образования исходных веществ с учетом стехиометрических коэффициентов (n , m )в уравнении реакции:

продукты исходных

реакции веществ

Энтальпия образования химических соединений (DН ) - изменение энтальпии в процессе получения этого соединения из простых веществ, устойчивых при данной температуре.

Стандартной энтальпией (теплотой) образования химического соединения (ΔН° 298) называется изменение энтальпии в процессе образования одного моля этого соединения, находящегося в стандартном состоянии (Т = 298 К и давление р = 1,01?10 -5 Па), из простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых фазах и модификациях. Стандартные энтальпии образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях. Стандартная энтальпия образования соединения - мера его термодинамической устойчивости, прочности.

Если DН > 0, реакцию называют эндотермической , если же теплота выделяется в окружающую среду DН < 0, реакцию называют экзотермической .

Поскольку значение DН определяется по уравнению (1) и не зависит от пути и способа проведения процесса, энтальпию относят к термодинамическим функциям состояния системы.

Первый закон (или начало) термодинамики ничего не говорит о направлении процесса, т.е. о направлении химической реакции. На этот вопрос отвечает второе начало термодинамики. Второй закон термодинамики выполняется только для систем, состоящих из большого количества молекул, для которых применимо понятие - вероятность состояния системы.


Число микросостояний системы, которые могут обеспечить данное макросостояние системы, называют термодинамической вероятностью (W ). Больцман установил связь между термодинамической вероятностью и энтропией системы (S ):

S = k lnW ,

где k - постоянная Больцмана, k = R / N A .

Изменение энтропии, как правило, определяется по уравнению

ΔS = ΔQ / T .

Энтропия является мерой неупорядоченности состояния системы. При переходе системы из менее упорядоченного состояния (с большим беспорядком) в более упорядоченное (с меньшим беспорядком) энтропия убывает. При переходе из газообразного в жидкое, а затем в кристаллическое (твердое) состояние степень беспорядка убывает, при этом убывает и энтропия системы. Энтропия - термодинамическая функция состояния системы (Дж/(моль×К)). Изменение энтропии (DS) при химических реакциях определяется следующим образом:

.

На основании понятия энтропии, второй закон термодинамики формулируется следующим образом: в изолированной системе самопроизвольно, т.е. без подвода энергии извне, совершаются только те процессы, которые обеспечивают повышение энтропии системы.

Третий закон термодинамики касается абсолютного значения энтропии. В настоящее время определить экспериментально или рассчитать абсолютное значение внутренней энергии и энтальпии не представляется возможным. Однако абсолютное значение энтропии определить возможно. Если принять, что при температуре абсолютного нуля все вещества находятся в кристаллическом состоянии, и при этом отсутствует всякое движение атомов и (или) молекул, за исключением движения электронов, то термодинамическая вероятность такого состояния будет равна единице (W = 1). Таким образом, используя уравнение Больцмана для расчета энтропии, получи, что при данной температуре S = 0. Это и есть третий закон термодинамики.

Объединив уравнения ΔQ = ΔU + p ΔV + ΔA * и ΔS = ΔQ / T , и учитывая, что ΔH = ΔU + p ΔV получим

Т ΔS = ΔH + ΔА * или ΔА * = - (ΔH - Т ΔS ).

В термодинамике величину ΔH - Т ΔS = ΔG определяют как изменение энергии Гиббса . Энергия Гиббса (H - Т S = G ) есть термодинамическая функция состояния системы, а ее изменение при химических взаимодействиях DG - энергиея Гиббса химической реакции.

Поскольку работа есть величина положительная, то система совершает работу над окружающей средой только в том случае, если энергия Гиббса будет меньше нуля (ΔG < 0). Таким образом, в закрытой системе самопроизвольно совершаются только те процессы, которые идут с уменьшением энергии Гиббса. Пределом этой убыли является минимальное значение G , отвечающее состоянию равновесия системы.

Если ΔG > 0, то процесс самопроизвольно протекать не может. В случае если ΔG = 0, т.е. ΔH = Т ΔS , то имеет место такое состояние, при котором реакция не идет ни в прямую, ни обратную сторону. Это состояние называется равновесным.

Из сказанного следует, что DG является критерием направления и предела самопроизвольного протекания изобарно-изотермического процесса. Из уравнения ΔG = ΔH - Т ΔS следует, что протекание самопроизвольной химической реакции зависит от двух факторов:

1) ΔH - стремление системы обладать минимальным запасом внутренней энергии;

2) Т ΔS - стремление системы принимать состояние с наиболее возможным беспорядком.

Энергия Гиббса образования химических соединений. Энергия Гиббса химической реакции DG , являясь изменением термодинамической функции состояния системы G , может быть вычислена по разности

.

Стандартной энергией Гиббса образования химического соединения DG ° обр называют энергию Гиббса реакции образования одного моля этого соединения, находящегося в стандартном состоянии, из соответствующих простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми. Необратимых реакций не так много. Большинство реакций являются обратимыми. Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

Таким образом, химическая термодинамика отвечает на вопросы:

− о возможности протекания реакции самопроизвольно в нужном направлении;

− сколько при этом выделится энергии;

− когда процесс закончится, т.е. наступит равновесие;

− если процесс самопроизвольно протекать не может, то сколько необходимо подвести энергии или какие необходимо создать условия (температура, давление, концентрация и другие факторы) для его протекания.

Химическая (равновесная) термодинамика не отвечает на вопрос о скорости процесса.

Химическое равновесие

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует затраты энергии. Например, в реакции синтеза аммиака равновесие наступает тогда, когда в единицу времени образуется столько же молекул аммиака, сколько их распадается на азот и водород . Следовательно, химическое равновесие можно определить как такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.

В состоянии равновесия прямая и обратная реакции не прекращаются. Поэтому такое равновесие называется подвижным или динамическим равновесием . Концентрации всех реагирующих веществ (как исходных, так и образующихся) остаются строго постоянными. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными.

На состояние химического равновесия оказывают влияние концентрация реагирующих веществ, температура, а для газообразных веществ и давление. При изменении одного из этих параметров равновесие нарушается и концентрация всех реагирующих веществ изменяется до тех пор, пока не установится новое равновесие, но уже при иных значениях равновесных концентраций. Подобный переход реакционной системы от одного состояния равновесия к другому называется смещением (или сдвигом) химического равновесия. Если при изменении условий увеличивается концентрация конечных веществ, то говорят о смещении равновесия в сторону продуктов реакции. Если же увеличивается концентрация исходных веществ, то равновесие смещается в сторону их образования.

Состояние химического равновесия характеризуется константой равновесия.

например, для гомогенной реакции

aA + bB « cC + dD

выражение для скорости прямой реакции в соответствии с законом действия масс:

v пр = k пр [A ] a [B ] b ,

где k пр - константа скорости прямой реакции; [A ] и [B ] - концентрации веществ.

Аналогично, для обратной реакции:

v обр = k обр [С ] с [D ] d .

Так как в состоянии равновесия скорости прямой и обратной реакций равны, то

k пр [A ] a [B ] b = k обр [С ] с [D ] d ,

К = k пр / k обр = [С ] с [D ] d / [A ] a [B ] b .

Для расчета стандартного изменения энтропии химической реакции А,.5° необходимо знать энтропию отдельных веществ. Для индивидуальных веществ может быть определено абсолютное значение энтропии на основе постулата, называемого третьим началом термодинамики: энтропия идеального кристалла при абсолютном нуле температуры равна нулю. Тогда по известной теплоемкости вещества можно вычислить энтропию при данной температуре по уравнению

Энтропия вещества последовательно возрастает при переходе от твердого к жидкому и газообразному состоянию, так как при этих фазовых переходах поглощается теплота и растет неупорядоченность. В химических реакциях энтропия возрастает особенно существенно при увеличении количества вещества газов. Поэтому знак AS можно определять «на глаз». Рассматривая реакцию

можно сказать, нс производя расчетов, что энтропия смеси в ходе реакции при постоянной температуре уменьшается, так как из 3 моль газа получается 2 моль газа.

В таблицы термодинамических свойств веществ вносятся значения стандартной энтропии , т.е. энтропии 1 моль вещества 5°, ДжДмольК), при стандартных условиях (приложение 3).

Для химической реакции стандартное изменение энтропии вычисляется по формуле, аналогичной расчету А,Н° по закону Гесса:

Таблицы термодинамических свойств веществ содержат также стандартные значения изменения энергии Гиббса образования сложных веществ из простых веществ, обозначаемые как AjG°. По этим данным рассчитывается стандартное изменение энергии Гиббса химической реакции A r G°:

Следует обратить внимание на то, что A r G° относится к одному обороту химической реакции в системе, находящейся в стандартном состоянии. Это понятие подразумевает концентрации всех веществ в растворе 1 моль/л или давление каждого газа в смеси 101,3 кПа. Отсюда следует, что A,.G изменяется по мере протекания реакции, так как изменяются концентрации веществ. Подробнее это разъясняется в следующей главе.

Расчет А Г С° производят как по табличным значениям AfG° веществ, участвующих в реакции, так и по предварительно вычисленным значениям А,Н° и Д,^, после чего применяют формулу (9.12) для изменения энергии Гиббса:

Пример 9.8. Рассчитайте двумя способами A r G° при 298,15 К для реакции оксида азота(П) с кислородом. Обсудите результат.

Решение. Напишем уравнение реакции и найдем необходимые табличные данные.


Рассчитаем изменения функций состояния для данной реакции:

Рассчитаем изменение энергии Гиббса но уравнению (9.12), обратив внимание на использование энергетических единиц (энтропия в Дж/К, энтальпия в кДж):

Расчет A r G° двумя способами дал практически совпадающие результаты. Поскольку расчет проведен для стандартного состояния, мы можем сказать, что в стандартном состоянии реакция идет самопроизвольно. В данной реакции изменение энтропии отрицательно, что можно обнаружить, просто рассматривая уравнение реакции (см. выше). Здесь энтропийный фактор не способствует протеканию реакции. Но изменение энтальпии тоже оказалось отрицательным (реакция экзотермическая) и способствующим протеканию реакции. В данном случае энергетический фактор контролирует направление реакции, так как абсолютное значение Д, Н° превысило слагаемое TA,.S°.

Пример 9.9. Имеется реакция 20 3 = 30 2 , для которой Л,.//° = 285,8 кДж и Д,.5° = = 137,8 Дж/К. Какая из двух реакций - прямая или обратная - идет самопроизвольно?

Решение. Из приведенных значений очевидно, что как энергетический, так и энтропийный факторы способствуют протеканию прямой реакции. Для нее заведомо получается отрицательное значение Д,.С°. Обратная реакция, т.е. образование озона, самопроизвольно идти не может. Однако озон образуется при облучении кислорода ультрафиолетовыми лучами.

Пример 9.10. Растворение хлорида натрия в воде, т.е. процесс

характеризуется следующими изменениями функций состояния: Д,.//° = +3,8 кДж/ моль, Д,S° = +43 ДжД.иоль- К), Д,.С° = -9,0 кДж/моль. Оцените роль отдельных факторов и приблизительную величину растворимости.

Решение. Здесь протеканию процесса растворения способствует только энтропийный фактор. Разрушение кристаллической структуры при растворении означает рост неупорядоченности. Это и выражается в увеличении энтропии. Для оценки растворимости снова надо вспомнить, что стандартные значения функций относятся к системе в стандартном состоянии. В данном случае эго раствор хлорида натрия с концентрацией 1 моль/л и кристаллы соли. Таким образом, растворение хлорида натрия идет самопроизвольно в одномолярном растворе, и растворимость, следовательно, превышает 1 моль/л.

В заключение главы рассмотрим понятие термодинамической устойчивости веществ. Об устойчивости или неустойчивости тех или иных веществ приходится говорить достаточно часто, и при этом не всегда ясно, о какой устойчивости идет речь. Коррозия железа означает, что этот металл неустойчив к действию воды и кислорода воздуха. Выделение газа при внесении питьевой соды в кипяток означает, что эта соль разлагается горячей водой. Эта же соль и без участия жидкой воды выделяет углекислый газ и пары воды при нагревании до 270 °С.

Под термодинамической устойчивостью подразумевается устойчивость вещества в данных условиях как такового, т.е. отсутствие у него превращений, идущих самопроизвольно (характеризующихся отрицательными значениями ArG) без участия других веществ.

Хлорид натрия ни в какое другое вещество превратиться не может. Это термодинамически устойчивое вещество. Другое хорошо известное вещество глюкоза, С 6 Н)2 0 6 , может подвергаться различным превращениям, среди которых, например, разложение на графит и воду:

Как видим, у этого превращения отрицательное значение A r G°, и оно должно идти самопроизвольно. Следовательно, глюкоза - термодинамически неустойчивое вещество. Неизбежно возникающий вопрос, почему же глюкоза может длительное время храниться, не превращаясь в другие вещества, будет рассмотрен в гл. 11.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH ), и энтропийным T ΔS , обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G , кДж):

При ΔG G = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен (рис. 4.4).

Рисунок 4.4.

Изменение энергии Гиббса: а – обратимый процесс; б – необратимый процесс.

Записав уравнение (4.2) в виде ΔH = ΔG + T ΔS , получим, что энтальпия реакции включает свободную энергию Гиббса и «несвободную» энергию ΔS · T . Энергия Гиббса, представляющая собой убыль изобарного (P = const) потенциала, равна максимальной полезной работе. Уменьшаясь с течением химического процесса, ΔG достигает минимума в момент равновесия (ΔG = 0). Второе слагаемое ΔS · T (энтропийный фактор) представляет ту часть энергии системы, которая при данной температуре не может быть превращена в работу. Эта связанная энергия способна лишь рассеиваться в окружающую среду в виде тепла (рост хаотичности системы).

Итак, в химических процессах одновременно изменяются энергетический запас системы (энтальпийный фактор) и степень ее беспорядка (энтропийный фактор, не совершающая работу энергия).

Анализ уравнения (4.2) позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH ) или энтропийный (ΔS · T ).

  • Если ΔH S > 0, то всегда ΔG
  • Если ΔH > 0 и ΔS G > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.
  • В остальных случаях (ΔH S H > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и T ΔS . Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение T ΔS также невелико, и обычно изменение энтальпии больше T ΔS . Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше T ΔS , и даже эндотермические реакции становятся осуществляемыми.

Проиллюстрируем эти четыре случая соответствующими реакциями:

ΔH ΔS > 0
ΔG

C 2H 5–O–C 2H 5 + 6O 2 = 4CO 2 + 5H 2O
(реакция возможна при любой температуре)

ΔH > 0
ΔS ΔG > 0

реакция невозможна

ΔH ΔS ΔG > 0, ΔG

N 2 + 3H 2 = 2NH 3 (возможна при низкой температуре)

ΔH > 0
ΔS > 0
ΔG > 0, ΔG

N 2O 4(г) = 2NO 2(г) (возможна при высокой температуре).

Для оценки знака ΔG реакции важно знать величины ΔH и ΔS наиболее типичных процессов. ΔH образования сложных веществ и ΔH реакции лежат в пределах 80–800 кДж∙. Энтальпия реакции сгорания всегда отрицательна и составляет тысячи кДж∙. Энтальпии фазовых переходов обычно меньше энтальпий образования и химической реакции Δ – десятки кДж∙, Δ и Δ равны 5–25 кДж∙.

Зависимость ΔH от температуры выражается соотношением ΔH T = ΔH ° + ΔC p · ΔT , где ΔC p – изменение теплоемкости системы. Если в интервале температур 298 К – Т реагенты не претерпевают фазовых превращений, то ΔC p = 0, и для расчетов можно пользоваться значениями ΔH °.

Энтропия индивидуальных веществ всегда больше нуля и составляет от десятков до сотен Дж∙моль –1K –1 (табл. 4.1). Знак ΔG определяет направление реального процесса. Однако для оценки осуществимости процесса обычно пользуются значениями стандартной энергии Гиббса ΔG °. Величина ΔG ° не может использоваться в качестве критерия вероятности в эндотермических процессах со значительным возрастанием энтропии (фазовые переходы, реакции термического разложнения с образованием газообразных веществ и др.). Такие процессы могут быть осуществлены за счет энтропийного фактора при условии

Задачи и тесты по теме "Химическая термодинамика. Энергия Гиббса"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.

Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением:

Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением:

ΔG = ΔH - TΔS

Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют изобарно-изотермическим потенциалом . В полученном уравнении величина ΔН оценивает влияние энтальпийного фактора, а величина ТΔS - энтропийного фактора на возможность протекания процесса. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.

Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответственно ΔG <0. Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).



Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия. Для изолированных систем ΔН = 0, поэтому ΔG = - TΔS. Таким образом, в изолированной системе самопроизвольно протекают процессы, приводящие к повышению энтропии (второй закон термодинамики).

Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии. Энергия Гиббса образования соединения (ΔG f) - это изменение свободной энергии, соответствующее синтезу моля данного соединения из простых веществ. Энергии Гиббса образования соединений, отнесенные к стандартным условиям, называются стандартными и обозначаются символом . Значения приведены в справочной литературе; их можно также вычислить по значениям энтальпий образования и энтропий соответствующих веществ.

Пример №1. Требуется рассчитать для Fe 3 O 4 , если известна энтальпия образования этого соединения ΔН о f (Fe 3 O 4) = -1117,13 кДж/моль и энтропии железа, кислорода и Fe 3 O 4 , равные 27,15; 205,04 и 146,19 Дж/моль. К. Соответственно

(Fe 3 O 4) = (Fe 3 O 4) - T· ,

где Δ - изменение энтропии при протекании реакции: 3Fe + 2O 2 = Fe 3 O 4

Изменение энтропии рассчитывается по следующему уравнению:

Δ = (Fe 3 O 4) - =

146,19 - (3 . 27,15 + 2 . 205,04) = -345,3(Дж/моль . К);

Δ = -0,34534 кДж/моль·К

(Fe 3 O 4) = -1117,13 - 298(-0,34534) = -1014,2 (кДж/моль)

Полученный результат позволяет сделать вывод, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции ( < 0), а энтропийный - препятствует (Т < 0), но не может увеличить до положительной величины



Поскольку G является функцией состояния, то для реакции: aA + bB = dD + eE изменение энергии Гиббса можно определить по уравнению

= Σi (пр) - Σj (реаг)

Пример №2. Оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:

4HNO 3 (ж) + 5O 2 (г) = 4O 3 (г) + 4NO 2 (г) + 2H 2 O(ж)

Рассчитаем изменение энергии Гиббса в стандартных условиях:

= - =

4·162,78 + 4·52,29 - = 1179,82 (кДж)

Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.

ХИМИЧЕСКАЯ КИНЕТИКА

Лучшие статьи по теме