Планета магии. Заговоры, амулеты, гадания
  • Главная
  • Талисманы
  • Верная запись закона сохранения механической энергии. Закон сохранения механической энергии. Виды механических сил

Верная запись закона сохранения механической энергии. Закон сохранения механической энергии. Виды механических сил

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Закон сохранения механической энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

Математическая формулировка

Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

\[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

Закон сохранения энергии для электромагнитного поля

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σ i j̅ i ×E̅ i . ΔV i .

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt S S̅ × n̅ . dA,

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

Это закон сохранения энергии в электродинамике .

Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

1.7. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Формулировка закона сохранения механической энергии. Формулировка в случае наличия диссипативных сил. Графическое представление энергии. Финитное и инфинитное движения. Абсолютно упругий удар. Абсолютно неупругий удар.

Полная механическая энергия системы - энергия механического движения и взаимодействия, т.е. равна сумме кинетической и потенциальной энергий. Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы полная механическая энергия сохраняется, т.е. не изменяется со временем. Это -фундаментальный закон природы. Он является следствием однородности времени - инвариантности физических законов относительно выбора начала отсчета времени. Все силы в механике принято разделять на консервативные и неконсервативные . Консервативными называются силы, работа которых не зависит от формы траектории (пути) между двумя точками, а зависит только от начального и конечного положений тела относительно другого. Иначе говоря, работа консервативных сил по замкнутой траектории равна нулю. Примером консервативных сил являются сила тяжести, сила упругости и т.д. К ним, прежде всего, относятся диссипативные силы (преобразующие механическую энергию в другие виды энергии), например, сила трения. Если есть изменение, то равна работе диссипативных сил. Финитное – движение точек в ограниченной области пространства. Инфинитное – тело уходит на бесконечность. Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. законы сохранения импульса и сохранения механической энергии выполняются . Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое тело. Не выполняется закон сохранения механической энергии: вследствие деформации часть кинетической энергии переходит во внутреннюю энергию тел (разогрев).

Введем понятие полной механической энергии частицы. Приращение кинетической энергии частицы равно элементарной работе результирующей всех сил, действующих на частицу. Если частица находится в потенциальном поле, то на нее действует консервативная сила со стороны этого потенциального поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами .

Таким образом, результирующая всех сил, действующих на частицу, может быть представлена в виде . Работа всех этих сил идет на приращение кинетической энергии частицы:

Согласно (6.7), работа сил поля равна убыли потенциальной энергии частицы, т. е. . Подставив это выражение в предыдущее и перенеся член влево, получим

Отсюда видно, что работа сторонних сил идет на приращениe величины . Эту величину - сумму кинетичеcкой и потенциальной энергии - называют полной механической энергией частицы в поле :

на конечном перемещении из точки 1 в точку 2

(7 .3)

т.е . приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех сторонних сил , действующих на частицу на том же пути. Если , то полная механическая энергия частицы увеличивается, если же , то уменьшается.

Полная механическая энергия частицы может измениться под действием только сторонних сил. Отсюда непосредственно вытекает закон сохранения полной механической энергии частицы во внешнем поле: если сторонние силы отсутствуют или таковы, что алгебраическая сумма их мощностей равна нулю в течение интересующего нас времени, то полная механическая энергия частицы остается постоянной за это время . Иначе говоря,

(7 .4)

Уже в такой простейшей форме данный закон сохранения позволяет достаточно легко получать ответы на ряд важных вопросов без привлечения уравнений движения, что, как мы знаем, часто сопряжено с проведением громоздких и утомительных расчетов. Именно это обстоятельство и превращает законы сохранения в весьма действенный инструмент исследования.

Проиллюстрируем возможности и преимущества, которые дает применение закона сохранения (7.4), на следующем примере.

Пример. Пусть частица движется в одномерном потенциальном поле U (х. Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения, и мы можем просто решить, например, такие вопросы, как:

1. Определить, не решая основного уравнения динамики, v (х) - скорость частицы в зависимости от ее координаты. Для этого достаточно знать, согласно уравнению (7.4) , конкретный вид потенциальной кривой U (х) и значение полной энергии Е (правая часть данного уравнения).

2. Установить область изменения координаты х частицы, в которой она может находиться при заданном значении полной энергии Е. Ясно, что в область, где U > Е, частица попасть не может, поскольку потенциальная энергия U частицы не может превышать ее полную энергию. Отсюда сразу следует, что при (рис. 7.1) частица может двигаться в области

между координатами (совершает колебания) или правее координаты . Перейти же из первой области во вторую (или обратно) частица не может: этому препятствует потенциальный барьер, разделяющий обе эти области. Заметим, что когда частица движется в ограниченной области поля, говорят, что она находится в потенциальной яме, в нашем случае - между .

Иначе ведет себя частица при (рис. 7.1): для нее доступна вся область правее . Если в начальный момент частица находилась в точке , то в дальнейшем она будет двигаться вправо. Определение изменения кинетической энергия частицы в зависимости от ее положения х может послужить полезным самостоятельным упражнением.

До сих пор мы ограничивались рассмотрением поведения одной частицы с энергетической точки зрения. Теперь перейдем к системе частиц. Это может быть любое тело, газ, любой механизм, Солнечная система и т. д.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами.

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

Но для каждой пары взаимодействий, как было показано , поэтому

где функция есть собственная потенциальная энергия данной системы частиц:

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Подобные рассуждения справедливы и для системы из любого числа частиц. Поэтому можно утверждать, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия U , и работа всех центральных внутренних сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы, т. е.

(7 .5)

а при конечном перемещении всех частиц системы

(7 .6)

где и -значения потенциальной энергии системы в начальном и конечном состояниях.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

,

(7 .7)

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

В заключение приведем полезные формулы для расчета собственной потенциальной энергии системы. Прежде всего покажем, что эта энергия может быть представлена как.

(7 .8)

где - потенциальная энергия взаимодействия частицы со всеми остальными частицами системы. Здесь сумма берется по всем частицам системы. Убедимся в справедливости этой формулы сначала для системы из трех частиц. Выше было показано, что собственная потенциальная энергия данной системы Преобразуем эту сумму следующим образом. Представим каждое слагаемое в симметричном виде: , ибо ясно, что . Тогда

Сгруппируем члены с одинаковым первым индексом:

Каждая сумма в круглых скобках представляет собой потенциальную энергию взаимодействия частицы с остальными двумя. Поэтому последнее выражение можно переписать так:

что полностью соответствует формуле (7.8).

Обобщение полученного результата на произвольную систему очевидно, ибо ясно, что подобные рассуждения совершенно не зависят от числа частиц, составляющих систему.

Для системы, взаимодействие между частицами которой носит гравитационный или кулоновский характер, формулу (7.8) можно преобразовать и к другому виду, воспользовавшись понятием потенциала. Заменим в (7.8) потенциальную энергию частицы выражением , где - масса (заряд) частицы, а - потенциал, создаваемый всеми остальными частицами системы в точке нахождения частицы.

где -объемная плотность массы или заряда, -элемент объема. Здесь интегрирование проводится по всему объему, занимаемому массами или зарядами.

Проведем классификацию сил по их свойствам. Известно, что частицы рассматриваемой системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. В соответствии с этим силы взаимодействия между частицами системы называют внутренними , а силы, обусловленные действием других тел, не входящих в данную систему, - внешними. В неинерциальной системе отсчета к последним нужно относить и силы инерции.

Кроме того, все силы делят на потенциальные и непотенциальные . Потенциальными называют силы, зависящие при данном характере взаимодействия только от конфигурации механической системы. Работа этих сил, как было показано, равна убыли потенциальной энергии системы. К непотенциальным силам относятся так называемые диссипативные силы - это силы трения и сопротивления, а также энергетические силы, вызывающие увеличение механической энергии системы за счет других видов энергии (например, взрыв артиллерийского снаряда). Важной особенностью данных сил является то, что суммарная работа внутренних диссипативных сил рассматриваемой системы отрицательна, а энергетических сил - положительна, причем в любой системе отсчета. Докажем это для диссипативных сил.

Любая диссипативная сила может быть представлена в виде

(7 . 1 4)

где - скорость данного тела относительно другого тела (или среды), с которым оно взаимодействует; - положительный коэффициент, зависящий в общем случае от скорости . Сила всегда направлена противоположно вектору . В зависимости от выбора системы отсчета работа этой силы может быть как положительной, так и отрицательной. Суммарная же работа всех внутренних диссипативных сил - величина всегда отрицательная . Переходя к доказательству этого, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны :

Теперь учтем, что - скорость тела 1 относительно тела 2 , а также то, что . Тогда выражение для работы преобразуется так:

Отсюда видно, что работа произвольной пары внутренних диссипативных сил взаимодействия всегда отрицательна, а значит и суммарная работа всех пар внутренних диссипативных сил также всегда отрицательна. Таким образом, действительно,

(7 . 1 5)

Теперь можно сформулировать закон сохранения полной механической энергии системы частиц. Выше было показано, что приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. Разделив эти силы на внешние и внутренние, а внутренние, в свою очередь,- на потенциальные и непотенциальные, запишем предыдущее утверждение так:

Теперь учтем, что работа внутренних потенциальных сил равна убыли собственной потенциальной энергии системы, т.е.

Тогда предыдущее выражение примет вид

Очевидно, энергия Е зависит от скоростей частицы системы, характера взаимодействия между ними и конфигурации системы. Кроме того, энергия Е, как и потенциальная энергия U , определяется с точностью до прибавления несущественной произвольной постоянной и является величиной неаддитивной , т. е. энергия Е системы не равна в общем случае сумме энергий ее отдельных частей. В соответствии c (7.7)

(7 . 1 8)

где - механическая энергия части системы, - потенциальная энергия взаимодействия ее отдельных частей.

Вернемся к формуле (7.16). Перепишем ее с учетом (7.17) в виде

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы - закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона . Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия - абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Закон Сохранения Механической Энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления , то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной .

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменениюпотенциальной энергиител, взятому с противоположным знаком:

Следовательно

E k1 +E p1 =E k2 +E p2 .

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражаетзакон сохранения энергии в механических процессах . Он является следствием законов Ньютона. СуммуE =E k +E p называютполной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

b. С учётом силтрения

Присматриваясь к движению шарика, подпрыгивающего на плите (§ 102), можно обнаружить, что после каждого удара шарик поднимается на немного меньшую высоту, чем раньше (рис. 170),т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближенно. Причина заключается в том, что в этом опыте возникают силы трения: сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и сумма потенциальной и кинетической энергий тел уменьшается. За счет этой убыли энергии и совершается работа против сил трения 1).

Уменьшение высоты отскока шарика после многих отражений от плиты.

Например, при падении тела с большой высоты скорость тела, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной (§ 68); кинетическая энергия тела перестает меняться, но его потенциальная энергия поднятия над землей уменьшается. Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.

Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. е. ее кинетическая энергия, и увеличение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.

Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а следовательно и его кинетическая энергия, меньше, чем та, которую он приобрел бы в отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения (за исключением движений в полной пустоте, например движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону - в сторону уменьшения суммарной энергии.

"Вообще, при наличии трения 1. закон сохранения механической энергии всегда нарушается и 2.сумма потенциальной и кинетической энергий тел уменьшается." Второе верно.Первое - наглая ложь ! Закон не нарушается. Dura lex sed lex.

Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий:

Изменение кинетической энергии системы равно суммарной работе всех сил, действующих на тела этой системы:

∆Eк = Aпот + Aнепот + Aвнеш (1)

Изменение потенциальной энергии системы равно работе потенциальных сил с обратным знаком:

∆Eп = - Aпот (2)

Очевидно, что изменение полной механической энергии равно:

∆E = ∆Eп + ∆Eк (3)

Из уравнений (1-3) получим, что изменение полной механической энергии равно суммарной работе всех внешних сил и внутренних не потенциальных сил.

∆Eк = Aвнеш + Aнепот (4)

Формула (4) представляет из себя закон изменения полной механической энергии системы тел.

В чем состоит закон сохранения механической энергии ? Закон сохранения механической энергии состоит в том, что полная механическая энергия замкнутой системы остается неизменной.


4) Вращательное движение. Момент импульса. Тензор инерции. Кинетическая энергия и момент импульса твёрдого тела. Теоремы Кёнига и Штейнера-Гюйгенса.

Вращательное движение.

Вращательное движение - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

При равномерном вращении (T оборотов в секунду),

§ Частота вращения - число оборотов тела в единицу времени.

,

§ Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением .

§ Линейная скорость точки, находящейся на расстоянии R от оси вращения

§ Угловая скорость вращения тела

.

§ Кинетическая энергия вращательного движения

где I z - момент инерции тела относительно оси вращения. - угловая скорость

Момент импульса.

Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

Тензор инерции.

Тензор инерции - в механике абсолютно твёрдого тела - тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

где - тензор инерции, - угловая скорость, - момент импульса

Кинетическая энергия.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Единица измерения в системе СИ - Джоуль. Кинетическая энергия есть разность между полной энергией системы и её энергией покоя. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где: - масса тела, - скорость центра масс тела, - момент инерции тела, - угловая скорость тела.

Теорема Кёнига.

Теорема Кёнига позволяет выразить полную кинетическую энергию системы через энергию движения центра масс и энергию движения относительно центра масс.

Кинетическая энергия системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

,

где - полная кинетическая энергия, - энергия движения центра масс, - относительная кинетическая энергия.

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы во вращательном движении относительно центра масс.

Теорема Штейнера-Гюйгенса.

Теорема Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Где - известный момент инерции относительно оси, проходящей через центр масс тела, - искомый момент инерции относительно параллельной оси, - масса тела, - расстояние между указанными осями.


5) Система двух частиц. Приведённая масса. Центральное поле. Законы Кеплера.

Приведённая масса.

Приведённая масса - условная характеристика распределения масс в движущейся механической системе, зависящая от физических параметров системы (масс, моментов инерции, и др.) и от её закона движения.

Обычно приведенная масса определяется из равенства , где - кинетическая энергия системы, а - скорость той точки системы, к которой приводится масса. В более общем виде приведённая масса является коэффициентом инерции в выражении кинетической энергии системы со стационарными связями, положение которой определяется обобщёнными координатами

где точка означает дифференцирование по времени, а есть функции обобщённых координат.

Система двух частиц.

Задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды.

Задачу двух тел можно представить как две независимых задачи одного тела, которые привлекают решение для движения одной частицы во внешнем потенциале. Так как многие задачи с одним телом могут быть решены точно, соответствующая задача с двумя телами также может быть решена. В отличие от этого, задача с тремя телами (и, более широко, задача n тел) не может быть решена, кроме специальных случаев.

В задаче двух тел, возникающей, например, в небесной механике или теории рассеяния, приведённая масса появляется как некая эффективная масса, когда задачу двух тел сводят к двум задачам об одном теле. Рассмотрим два тела: одно с массой и другое с массой . В эквивалентной проблеме одного тела рассматривают движение тела с приведённой массой, равной

где сила, действующая на эту массу, дается силой, действующей между этими двумя телами. Видно, что приведённая масса равна половине среднего гармонического двух масс.

Центральное поле.

Сведя задачу о движении двух тел к задаче о движении одного тела, мы пришли к вопросу об определении движения частицы во внешнем поле, в котором ее потенциальная энергия зависит только от расстояния до определенной неподвижной точки; такое поле называют центральным. Сила

действующая на частицу, по абсолютной величине зависит при этом тоже только от и направлена в каждой точке вдоль радиус-вектора.

При движении в центральном поле сохраняется момент системы относительно центра поля. Для одной частицы это есть

Законы Кеплера.

Законы Кеплера - три эмпирических соотношения. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , - массы планеты и Солнца.

1. Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

2. Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.


6) Функция Лагранжа. Уравнения Лагранжа. Обобщённые импульсы, энергия. Циклические координаты. Фукнция Гамильтона и уравнения Гамильтона.

Функция Лагранжа.


7) Гармонические колебания. Амплитуда. Частота. Пружинный маятник, математический маятник, физический маятник.

Гармонические колебания.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

§ Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

§ Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Амплитуда.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.

Иначе: Амплитуда - модуль максимального отклонения тела от положения равновесия. Например:

§ амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины.

Частота.

Частота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Стандартные обозначения в формулах - , , или . Единицей частоты в СИ в общем случае является Гц. Величина, обратная частоте, называется периодом.

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Пружинный маятник.

Пружинный маятник - механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения. Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Математический маятник.

Математический маятник - осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Плоский математический маятник со стержнем - система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Физический маятник.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

8) Колебания с трением. Диссипативная функция.

В реальных системах всегда происходит диссипация энергии. Если потери энергии не будут компенсироваться за счет внешних устройств, то колебания с течением времени будут затухать и через какое-то время прекратятся вообще. Рассмотрим колебания пружинного маятника в вязкой среде.

Для тела, движущегося в однородной вязкой среде, сила трения зависит только от скорости. При малых скоростях можно считать, что сила трения

, где бета – положительный постоянный коэффициент.

К энергии

Выводы.

· Характер собственных колебаний при наличии силы трения определяется соотношением между и . При – апериодический режим (3); – колебания описываются периодическим законом c экспоненциально убывающей от времени амплитудой (4); – режим критического затухания (5).

· Добротность колебательной системы является очень важным параметром, характеризующим диссипационные процессы в системе.

Диссипативная функция (функция рассеяния) - функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте - в тепловую, например, для учёта влияния сил вязкого трения на движение механической системы. Диссипативная функция характеризует степень убывания механической энергии этой системы. Диссипативная функция, делённая на абсолютную температуру, определяет скорость, с которой возрастает энтропия в системе (т. н. производство энтропии). Диссипативная функция имеет размерность мощности.


9) Вынужденные колебания без трения. Биения. Резонанс.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Лучшие статьи по теме