Планета магии. Заговоры, амулеты, гадания
  • Главная
  • Обереги
  • Метод получения искусственных алмазов. Что представляет собой искусственный бриллиант. Когда копия не хуже оригинала: искусственные алмазы

Метод получения искусственных алмазов. Что представляет собой искусственный бриллиант. Когда копия не хуже оригинала: искусственные алмазы

Другой способ (CVD), который стали применять, чтобы произвести искусственные бриллианты, отличается тем, что весь процесс происходит при более низком уровне давления и за более короткий срок. Исходный материал погружают в специальную камеру, где создаются условия вакуума. Затем начинается воздействие микроволновыми лучами и газами. Углеродная плазма разогревается до 3000 градусов. Происходит формирование синтетических алмазов путем осаждения молекул углерода на пластинку-заготовку.

В качестве сырья используют вещества, которые богаты углеродом. Это может быть графит, сахарный уголь, сажа. Искусственно выращенные камни обладают той же структурой, что и природные. И это объясняет их твердость и высокую прочность.

Области применения

По своему внешнему виду искусственный бриллиант ничем не отличается от настоящего природного минерала. Однако стоимость его значительно меньше. Такие камушки, полученные в условиях лаборатории, лучше поддаются огранке. Ювелиры могут огранить даже очень маленький синтетический кристалл. Такие мелкие образцы очень востребованы, ведь натуральные мелкие кристаллы очень трудно извлекать из породы.

Высокие показатели твердости и прочности, которыми отличаются искусственно выращенные алмазы, делают их незаменимыми для использования при создании различных устройств для резки или шлифовки. Алмазное напыление и крошка сегодня присутствуют на пилах, сверлах, бурах и множестве других инструментов. Сейчас такой материал активно используется и при производстве микросхем.

Производство синтетических алмазов газовым способом (CVD) очень важно, так как полученный материал используется для создания высокотехнологичного медицинского оборудования. Использование таких составляющих позволяет продлить срок службы приборов, так как алмазные детали способные выдерживать сильный нагрев, сохраняя эффективность и работоспособность.

Разнообразие видов

Высокий спрос на красивые ювелирные изделия с искрящимися, переливающимися камнями естественно привел к тому, что стали появляться различные имитации алмаза. Иногда вместо этого драгоценного камня в украшениях использовали прозрачную разновидность кварца – горный хрустать, белый сапфир. Но с развитием технологий появились искусственные бриллианты, которые мало чем отличались от настоящего камня. .jpg" alt="искусственный бриллиант" width="200" height="213">

Заменитель бриллианта, полученный в условиях лаборатории, помимо атомов углерода содержит в своей кристаллической решетке азот, включения которого появляются там на стадии роста. Из-за того, что азот подавляет голубой спектр, искусственный камень приобретает оттенок желтого цвета. Сейчас существуют следующие разновидности:

  • Еще в семидесятых года ХХ века в ювелирной промышленности появился фианит. Эта имитация алмаза представляла собой кубически стабилизированный циркон. По своим оптическим свойствам он очень схож с натуральным образцом, однако значительно уступает ему по прочности.
  • Другим вариантом имитации алмаза является нексус (Nexus). При его получении углерод соединяется с различными примесями. Образец отличается высокими показателями прочности и твердости.
  • Полученный из карбида кремния муассанит является самым дорогим. Он обладает необыкновенным блеском и отменной прочностью.

На изделия, в которых используется имитация бриллианта, всегда сохраняется высокий спрос. Однако, даже выбирая украшение, в котором используется искусственно выращенный камень, нужно быть осторожными. Недобросовестные продавцы могут реализовывать обычное стекло, которое было огранено.

Как отличить имитацию

Покупая любое украшение в ювелирном магазине, вы можете попросить у продавца документы, которые подтверждают подлинность того или иного изделия. И если в изделии используется искусственно выращенный кристалл, то об этом вы должны получить полную информацию.

Если вы сомневаетесь, что перед вами природный бриллиант, то можно попробовать проверить это и в домашних условиях:

  1. Первое, на что стоит обратить внимание, – это количество граней. Фианит получает при огранке меньше граней, которые к тому же более округлы.
  2. Можно капнуть на испытуемый образец каплю масла. На натуральном камушке она останется без изменений. А на имитации – распадется на мелкие частички, а потом соберется в маленькие капельки.
  3. Если опустить кристаллик в масло, а потом прикрепить к стеклянной поверхности, то настоящий к ней прилипнет, а с такой фокус не пройдет.
  4. Попробуйте положить кристалл на газету. Через фианит вы будете видеть буквы, а через бриллиант – нет.
  5. Натуральный камень, сжатый в руке, будет оставаться прохладным, когда как имитация быстро приобретет температуру тела.
  6. Рассмотрите кристалл. Природные алмазы исключительно редко бывают однородными, в них всегда присутствуют вкрапления, мелкие дефекты. Тогда как фианиты всегда абсолютно прозрачны.

Интересно, что фианиты, не обладая уникальным бриллиантовым сиянием, намного лучше отбрасывают блики. Но если вы сомневаетесь в происхождении камня, лучше всего обратитесь к профессионалам. Используя современное оборудование, геммологи сообщат вам результат, точность которого будет равна 100%.

С неожиданным явлением столкнулись ученые Всесоюзного научно-исследовательского института синтеза минерального сырья. Обычным методом высоких температур и давлений они выращивали искусственные алмазы . На этот раз целью опытов было выяснить, как влияет на свойства алмаза сверхнормативный азот, и для того чтобы ввести в будущие кристаллы побольше азота, в смесь металлов - растворителей углерода добавляли от 5 до 20% нитрида марганца Mn 4 N.

Полученные кристаллы действительно содержали больше азота, чем обычно (на два - три порядка!). Это были настоящие искусственные алмазы , правда, монокристаллов идеальной формы, с кубической решеткой, среди них было очень мало. Зато почти 20% всех алмазов оказались двойниковыми сростками, а не монокристаллами. Наблюдались и некоторые аномалии физических характеристик, в частности слабая анизотропия (неоднородность) оптических свойств.

Большинство «отклонений от нормы» объясняются напряжениями, возникшими в кристаллической решетке из-за добавки азота. Но как объяснить необычную окраску большинства кристаллов? Исследователи получили не желтые, как обычно, а густозеленые прозрачные искусственные алмазы.

Применение искусственных алмазов

Алмазные стеклорезы

Использование алмаза для резки стекла - наиболее древний способ практического применения этого минерала. Самым распространенным инструментом для этой цели является алмазный стеклорез, который состоит из ограненного в форме правильной четырехгранной пирамиды кристалла алмаза, закрепленного в металлическом держателе, и латунного молоточка с деревянной ручкой. Для изготовления стеклорезов применяются алмазы весом 0,02-0,20 карата плотного строения без дефектов.
В зависимости от толщины стекла используются различные стеклорезы. Например, для резки стекла толщиной до 5 мм применяются стеклорезы, где вес кристалла составляет от 0,02 до 0,12 карата, а толщиной до 10 мм - от 0,12 до 0,20 карата.
Производительность алмазного стеклореза очень высокая. Алмазом весом 0,1 карата, например, можно нарезать 100 000 погонных м стекла. Твердосплавные стеклорезы такой производительности не дают.

Зубоврачебный инструмент

Помимо перечисленных методов технического применения алмаз используется и в медицине главным образом, при лечении зубов.
Зубная эмаль по твердости близка к кварцу. Поэтому для ее обработки необходимы очень твердые материалы. Применяемые инструменты с карбидом кремния обладают недостаточной твердостью; кроме того, они вызывают боль. Применение алмазного инструмента устраняет эти недостатки.
Создается возможность значительного увеличения числа оборотов бормашин для обработки зуба при малой силе давления на него. Болевые ощущения при использовании алмазного инструмента сводятся до минимума.
Мы коротко рассказали о важнейших областях применения алмазов в технике. Однако этим не исчерпываются все области его использования. Алмаз применяется и для многих других целей, и эта сфера его использования увеличивается с каждым годом.
Применение алмаза в технике позволяет резко повысить производительность труда и снизить себестоимость продукции, облегчить процессы автоматизации производства, получить детали исключительной точности и чистоты отделки, а также сэкономить огромные средства.
Наконец-то человек нашел для алмаза настоящее место в жизни, заставил его работать на себя. И для нас сейчас алмаз в рабочей спецовке гораздо ценнее, чем алмаз в сверкающей короне.

Алмазное волочение

Процесс волочения - это способ обработки металлов давлением, состоящий в протягивании катаных, реже кованых изделий круглого или фасонного профиля через отверстие, сечение которого меньше сечения исходного изделия. В результате волочения поперечные размеры изделия уменьшаются, а длина увеличивается. Этот процесс особенно широко применяется для изготовления тонкой проволоки из цветных металлов. Рассматриваемый способ обработки металла был известен еще 3-3,5 тыс. лет до нашей эры. В те далекие времена волочение применялось для изготовления золотой и серебряной проволоки для украшений. Такая проволока называлась канителью. Отсюда в наш обиход прочно вошло выражение «тянуть канитель», т. е. медленно, однообразно делать какое-либо дело.
Такое выражение объяснилось технологией изготовления проволоки в древние времена. Тогда все оборудование состояло из волочильной доски, закрепленной между двумя столбами, и клещей, которые привязывались к поясу рабочего, сидящего в качающейся люльке. Рабочий подтягивался к волоке, захватывал пропущенный через нее конец проволоки клещами, упирался согнутыми ногами в столбы и, распрямляя их, протягивал проволоку. Он качался до тех пор, пока не вытягивал проволоку нужного диаметра и размера.
Для того чтобы вытягивать проволоку нужного диаметра, волоки должны быть изготовлены из очень прочного материала, трудно поддающегося деформации. Волоки делали из твердых сплавов, которые не могли долго выдерживать напряжение и быстро выходили из строя.
С внедрением алмазов в технику для волочения тонкой проволоки стали применяться алмазные волоки (фильеры). Через такие фильеры стало возможным протягивать проволоку точного диаметра - от 0,001 до 2 мм.
Применение алмазных волок обеспечивает высокое качество поверхности и точность диаметра протягиваемой проволоки, так как алмаз трудно поддается истиранию. При алмазном волочении можно получить тонкую проволоку диаметром 9-10 микрон. Стойкость алмазных волок выше стойкости твердосплавных в 100-300 раз в зависимости от диаметра волоки. При волочении медной проволоки стойкость алмазных волок, выраженная в километрах протянутой проволоки, составляет 25-30 тыс. км, тогда как стойкость твердо-сплавных лишь 100 км. Через одну алмазную фильеру можно протянуть проволоку такой длины, которой можно опоясать земной шар по экватору несколько раз.
Алмазная волока представляет собой ограненный по трем плоскостям кристалл алмаза, закрепленный в металлической оправе, с просверленным в центре и отшлифованным каналом.
Вес алмаза для волок выбирается в зависимости от диаметра их отверстий. ГОСТ 6271-60 устанавливает вес кристаллов для волок.
Волочение проволоки на отечественных заводах осуществляется на машинах однократного и многократного волочения. В первых - проволока протягивается через одну фильеру, а во вторых - через несколько последовательно расположенных волок. Наибольшее распространение имеют машины многократного волочения, отличающиеся высокой производительностью.

Алмазные наконечники

Современный уровень машиностроения характерен применением большого разнообразия высокопрочных и износостойких материалов. Важным их качеством является твердость. Поэтому в промышленности, связанной с обработкой металлов и минералов, наиболее широко применяются испытания на твердость.
Для определения твердости металлов и минералов применяется несколько методов. По методам Бринелля и Роквелла испытание проводится путем вдавливания стального шарика в испытываемый материал; по методу Виккерса для этой цели используют кристалл алмаза в форме пирамиды; по методу Мооса твердость определяют путем царапания минерала, металлов и минералов определяется их сопротивление деформации при вдавливании шарика или пирамидки. При этом происходит определенная деформация не только в испытываемом материале, но и в том, которым испытывают. Алмаз не подвергается деформации и поэтому он отвечает требованиям, предъявляемым при конструкции приборов для определения твердости минералов и металлов.

Бояться пришествия искусственных алмазов стоит не группе De Beers, а компании Intel

Метод Gemesis Высокое давление, высокие температуры. Кристалл вырастает в камере, имитирующей условия земной коры.

Метод Apollo Химическое осаждение паров. Кристалл получается, когда из облака плазмы идет дождь, который попадает на алмазную подложку.

Искусственные микроалмазы для промышленного применения.

Современная сенсация — синтетические ювелирные алмазы

Аарон Вейнгаартен смотрит на желтый алмаз сквозь ювелирную лупу. Мы в Антверпене, в гостиной Вейнгаартена, полной мрамора и позолоты, на самом краю района ювелиров, в самом центре алмазной вселенной. Почти 80% всех алмазов и бриллиантов в мире проходят через руки бельгийских торговцев камнями вроде Вейнгаартена, который носит окладистую бороду и черный костюм ортодоксального еврея. «Камень очень редкий, — бормочет себе под нос ювелир, — желтые алмазы такого оттенка найти очень непросто. Этот стоит 10, может, 15 тысяч долларов». Я сообщаю ему, что в кармане у меня два точно таких же. Он кладет камень на стол и в первый раз смотрит на меня серьезно. Я выкладываю еще два камня. Все они одного цвета и размера. Вероятность найти три одинаковых желтых алмаза примерно такая же, как бросить монету 10 тысяч раз и ни разу не увидеть орла. «Это что, кубическая окись циркония (в России этот камень больше известен под названием «фианит»)?» — не особенно надеясь на положительный ответ, спрашивает Вейнгаартен. Я отвечаю, что все алмазы — настоящие, их изготовила машина, находящаяся во Флориде. Общая стоимость производства не превысила сотни долларов. Ювелир ерзает на стуле, неотрывно следя за камнями, которые лежат на столе в его гостиной. «Если их нельзя отличить, индустрии придет конец», — резюмирует он.

При температуре 1200оС под давлением примерно 50 тыс. атмосфер углерод кристаллизуется в самый твердый из известных материалов. Именно так сформировались алмазы глубоко в земной коре 3,3 млрд. лет назад. Воссоздать такие условия в лаборатории непросто, но попыток предпринималось немало. Начиная с середины XIX века десятки «алхимиков» пострадали в результате несчастных случаев, происшедших при попытках изготовить алмазы. Последние десятилетия принесли успех, пускай скромный. Начиная с 1950-х инженеры научились вырабатывать мелкие кристаллы для промышленного применения — покрытия пил, буровых коронок и шлифовальных кругов. Но летом 2003 года на рынок попала первая волна искусственных алмазов ювелирного качества. Делать их научились две компании — Gemesis во Флориде и Apollo Diamond в Бостоне.

Неожиданный выход на рынок искусственных камней грозит необратимо трансформировать алмазную индустрию, ежегодный оборот которой оценивается в $7 млрд. Но важнее другое — массовое производство алмазов открывает двери разработке алмазных полупроводников. Оказывается, алмаз — не только самый твердый камень на земле, он также обладает самой высокой теплопроводностью. Сегодняшние полупроводники греются примерно до 100оС, а при дальнейшем нагревании просто перестают работать. Алмазные микросхемы, напротив, можно греть до температур, когда обычный кремний уже давно бы расплавился.

Бригадный генерал

Международный концерн De Beers уже 115 лет как монополизировал алмазный бизнес, уничтожая конкурентов путем регулирования предложения алмазов на рынке. За свою долгую историю De Beers пережила многочисленные африканские восстания, боролась с американским антимонопольным законодательством, уклонялась от обвинений в эксплуатации несчастных рабочих третьего мира. Не сломило ее монополию и открытие многочисленных алмазных месторождений в Австралии, Канаде и Сибири. У компании громадный рекламный бюджет и полный Контроль над каналами распространения камней. Но чего у De Beers нет — так это отставного бригадного генерала Картера Кларка.

Картеру Кларку 75 лет. Он ушел в отставку более 30 лет назад, но командных навыков так и не утратил. Когда генерал появляется в офисе компании Gemesis, которую он основал в 1996 году с целью наладить массовое производство алмазов, сотрудники встают в приветствии. Иначе нельзя. Особенно учитывая, что «Генерал», как его тут прозвали, постоянно отдает своим подчиненным честь, как будто они — его армия, которая идет в бой. «Я был в Корее и Вьетнаме», — сообщает Генерал, отдав мне честь в приемной. — Так что уж поверьте, справлюсь и с алмазным бизнесом". Кларк показывает мне свою новую фабрику, расположенную в промышленной зоне недалеко от города Сарасота (Флорида). В здании планируется разместить машины для производства алмазов, которые похожи на медицинские приборы поддержания жизни. В строю 27 таких машин. Компания Gemesis надеется вводить в строй по 8 штук ежемесячно. В этом ангаре их число должно достичь 250-ти. Другими словами, Gemesis готовит первый удар по алмазному бизнесу.

Кларк не собирался становиться алмазным королем. Идея пришла случайно, во время его поездки в Москву в 1995 году. Его тогдашняя компания — Security Tag Systems — была одной из первых, кто привез в Россию метки, мешавшие воровать вещи из магазинов. Так он познакомился с Юрием Семеновым, который руководил одним из научно-технических бюро, по государственной программе занимавшихся продажей военных технологий советских времен западным инвесторам. Но у Семенова была идея получше — он предложил Генералу выращивать алмазы. Через несколько часов у Кларка на столе лежал проект двухтонного агрегата, который при помощи гидравлики и электричества фокусировал все возрастающие объемы тепла и давления в центре сферы. Генералу сообщили, что прибор воссоздает условия, существующие на глубине 150 км под землей, где и формируются алмазы. Поместите осколок алмаза в земную кору, добавьте углерода, и алмаз станет расти. В 1954 году компания General Electric именно так и поступила, прессом в 400 тонн выдавив душу из углерода. Устройство General Electric позволяло вырабатывать недорогую алмазную пыль для промышленного применения, а в начале 1970-х компания научилась делать алмазы весом целых 2 карата. Но для этого требовалось столько усилий и электроэнергии, что получалось дороже, чем купить настоящий алмаз из шахты. Русские утверждали, что их конструкция недорога, потребляет не больше энергии, чем несколько ламп накаливания, и будет выдавать по трехкаратному камню раз в несколько дней. И что Генерал сможет получить такую машину всего за $57 тыс.

Три месяца спустя, зимой, Кларк вернулся в Москву. Его встретили телохранители и отвезли на склад под Москвой. В холодном, неотапливаемом помещении он наблюдал, как Николай Полушин — один из сибирских ученых, придумавших устройство — поднял верхнюю половинку сферы, достал небольшой керамический куб, ударил по нему молотком и передал Кларку небольшой алмаз. Все улыбались. В конце концов Генерал заказал три машины и попросил Семенова отправить их во Флориду.

Русские машины

Но существовали и две проблемы. Во‑первых, никто в США не умел работать с такими машинами. Эту проблему Кларк решил, переселив команду русских во Флориду. Во‑вторых, русские и сами-то не слишком хорошо овладели процессом. Работу машины пока нельзя было назвать надежной. Генералу и его новой компании Gemesis срочно была нужна помощь. Он обратился к иранцу по имени Реза Аббашайн, эксперту в области кристаллов, который возглавлял кафедру материаловедения в университете штата Флорида. Аббашайн согласился доработать машину. При помощи своих студентов он выкинул всю русскую автоматику и установил компьютерные системы. Коллектив заменил блок питания и методично отслеживал малейшие нюансы работы машины. Учитывая, что приходилось одновременно контролировать более 200 параметров, работа была нелегкой.

К 1999 году усилиями Аббашайна у Генерала были очень высококачественные камни. И Кларк полетел в Лондон, чтобы показать их группе потенциальных инвесторов. Вместо того чтобы просто высыпать груду алмазов перед ними на стол, он отправился к ювелиру в Хаттон Гарден, алмазный район британской столицы, и попросил, чтобы его камни оправили в кольца. Ювелир согласился, и Кларк вернулся в свой отель. Зазвонил телефон. На проводе была компания De Beers. По словам Кларка, чиновника из De Beers Джеймса Эванса Ломби предупредили о синтетических камнях менее чем через два часа после их прибытия к ювелиру. Ломби попросил о встрече с Генералом и приехал прямо в гостиницу, где и состоялась их беседа за чаем под звуки пианино и скрипичного дуэта.

Представители компании De Beers отказываются говорить об этой встрече — да и обо всем остальном, касающемся этой истории — но Кларк рассказывает, что просто выложил свои козыри. «Когда я сообщил, что собираюсь открыть фабрику по массовому производству таких камней, чиновник побелел. В De Beers знали о существовании технологии, но надеялись, что она так и останется в России и никто не сможет довести ее до ума. К концу разговора его руки тряслись», — вспоминает Кларк.

Но De Beers не сдавалась. В течение 2000 года картель запустил «Программу защиты камней», цель которой — информировать покупателей алмазов о том, что на рынке появились искусственные камни, и стал поставлять свои проверочные машины (модели DiamondSure и DiamondView) в крупнейшие в мире ювелирные лаборатории. Раньше такие лаборатории анализировали и сертифицировали цвет, прозрачность и размер камней. Теперь их просят также отличать рукодельные камни от ископаемых. Прибор DiamondSure просвечивает камень и анализирует показатель преломления. Если камень кажется подозрительным, его проверяют на приборе DiamondView, который выясняет внутреннюю структуру алмаза. Еще в 1996 году ученые De Beers писали, что идеально было бы иметь простой прибор, который смог бы отличать искусственные алмазы от натуральных. Но, к сожалению, в ближайшее время такой прибор создать не удастся, поскольку синтетические алмазы — все равно алмазы, как химически, так и физически.

Синтетика

Летом 2001 года Аббашайн сообщил Генералу, что готов, наконец, к массовой выработке алмазов. Оставалось принять одно, последнее решение. Каждая машина могла вырабатывать по одному желтому камню весом три карата каждые три дня (бесцветные камни вырабатываются дольше). Учитывая их редкость, удельная цена карата желтых алмазов настолько выше, что позволить себе такие камни могут только очень богатые люди. К тому же за последние годы цветные алмазы вошли в моду (в обручальном кольце у Дженнифер Лопез, например, был розовый алмаз). Кларк решил, что вызовет наибольший шум, принеся желтые камни на рынок американского «среднего класса». Он собирался конкурировать как по цене (продавая свои камни на 10%-50% дешевле), так и по стилю. И, в случае победы на рынке желтых камней, перейти на рынок бесцветных. Но алмазная индустрия нанесла ответный удар. В начале 2002 года De Beers начала поставки улучшенных моделей DiamondSure. Тем временем лоббисты добились требования Федеральной торговой комиссии США, чтобы Gemesis маркировала свои камни как синтетические.

Gemesis строит свой маркетинг на утверждении, что синтетические камни лучше натуральных. Генерал предлагает называть свои алмазы «культивированными». Это намеренная отсылка к бешено популярному (и гораздо более ценному, чем натуральный) искусственному жемчугу.

«Если вы предложите женщине выбрать между 2-каратным и 1-каратным алмазом, что она, по‑вашему, выберет при прочих равных? — вопрошает Генерал. — Важно ли ей, какие из них натуральные? Будут ли к ней подходить с вопросами о натуральности камней в ее украшениях?» «Да ни за что!» — отвечает он сам себе. С ним не согласен Джеф Ван Ройен, который представляет Высший алмазный совет Бельгии: «Если люди по‑настоящему любят друг друга, они дарят настоящие камни. Не может быть символом вечной любви нечто, созданное на прошлой неделе».

Это и есть официальная линия De Beers. Ван Ройену не нравится аналогия с искусственным жемчугом, скорее уж речь может идти о синтетических изумрудах, которые появились в огромных количествах в середине 1970-х. Вначале цена была очень высокой, но ювелирные лаборатории быстро поняли, что отличить синтетику можно с помощью обычного микроскопа. Цена упала, и теперь они стоят не более 3% от натуральных.

Новая угроза

Ван Ройен рассказал мне и о другой угрозе. Ходят слухи о новой методике выращивания алмазов ювелирного качества. Процесс представляет собой химическое осаждение паров (chemical vapor deposition — CVD) и уже более десятилетия используется для покрытия больших поверхностей микроскопическими кристаллами алмазов. Эта технология основана на превращении углерода в плазму, которая затем осаждается на подложку в виде алмазов. Ранее существовала только одна проблема — никто не мог научиться выращивать таким образом цельный алмаз. «По крайней мере, до сих пор было так», — добавляет Ван Ройен. Компания Apollo Diamond, темная лошадка из Бостона, по слухам, научилась. Если это правда — индустрии и правда грозит крах, так как алмазы, созданные по технологии CVD, можно выращивать огромными брикетами, а после резки и полировки они будут неотличимы от натуральных камней. «Но таких алмазов никто в Антверпене не видел, так что мы даже не знаем, существуют ли они на самом деле», — говорит Ван Ройен. Тогда я достаю из кармана коробочку от 35-мм фотопленки и кладу ее на стол. Внутри, на подушечках, лежат два маленьких алмаза. «Поверьте мне, они существуют», — сообщаю я ученому.

Темная лошадка

За три дня до поездки в Бельгию я слетал в Бостон и встретился с Бриантом Линаресом, президентом компании Apollo Diamond. После 45-ми-нутной беседы в машине он, видимо, решил, что со мной все в порядке и я не шпион De Beers. Мы вошли в помещение, и я увидел человека, с головы до ног одетого в герметичный костюм, хорошо известный благодаря рекламе Intel. «Добро пожаловать в компанию Apollo Diamond», — подтолкнул меня Линарес и быстро закрыл дверь. Он выдал мне герметичный костюм, в том числе бутсы, очки и шапочку для волос. В комнате были трое в похожей одежде. Они стояли вокруг цилиндрического аппарата, похожего на промышленный кофейник, оборудованного засовом на иллюминаторе. Из окошка светило сверхъестественным зеленым. Я заглянул через стекло. Там, за мерцающим зеленым облаком, росли четыре алмаза. «К этому я шел очень долго», — рассказал мне один из людей, стоявших возле машины. Это Роберт Линарес, отец Брианта. В 1980-х он был известным исследователем в области сложных полупроводников. Его компания, Spectrum Technology, известна благодаря вводу в производство технологии использования пластин арсенида галлия в качестве полупроводниковой подложки, заменившей кремний и позволившей сотовым телефонам стать меньше и использовать большую полосу частот. Линарес-старший продал свою компанию корпорации PacifiCorp и в 1985 году исчез из мира полупроводников. Оказывается, на свои деньги он построил секретную лабораторию для исследования алмазов. «Я понимал, что рано или поздно алмазы станут совершенными полупроводниками, хоть никто в это и не верил. После продажи компании я мог делать что хотел, и я потратил 15 лет на собственные исследования», — рассказал Линарес.

Чтобы вырастить монокристалл алмаза методом CVD, сначала нужно угадать точное сочетание температуры, плотности газа и давления, «ту самую точку», в которой начинается создание единого кристалла. В противном случае на вас прольется дождь из несчетного количества мелких алмазов. Найти «ту самую точку» примерно так же непросто, как найти конкретную песчинку на берегу. Из миллионов комбинаций подходит только одна. И в 1996 году Линарес ее нашел. А в июне 2003 года он, наконец, получил патент на свой процесс и уже вырабатывает безупречные алмазы, планируя вскоре начать продажу камней на ювелирном рынке. Но это — только первый шаг. На деньги от продажи камней Роберт и Бриант Линаресы рассчитывают заняться разработкой алмазных полупроводников. Неудивительно, что алмазная индустрия не в восторге от их планов, в чем убедился Линарес-младший пять лет назад, посетив конференцию в Праге. Во время перерыва к Линаресу подошел человек и посоветовал быть осторожнее. «Он сказал, что исследования моего отца — верный путь получить пулю в голову», — вспоминает Линарес.

Пять долларов за карат

Алмазная индустрия, вообще-то, гораздо больше боится камней, созданных по технологии CVD, чем камней от Gemesis, хоть последняя и представляет непосредственную угрозу. По идее, метод CVD даст чрезвычайно чистый кристалл. Алмазы от Gemesis растут в металлическом расплаве, и небольшие частички металлов попадают в решетку алмаза при его росте. Алмазы CVD, напротив, осаждаются, образуя почти стопроцентно чистый кристалл, и поэтому неотличимы от натуральных. Но наибольший потенциал технологии CVD лежит в использовании их в компьютерах. Если алмаз станет применим в полупроводниках, потребуется метод недорогого выращивания камней в больших пластинах. (Кремниевые пластины, которые использует Intel, например, имеют диаметр около 30 см). А размер CVD ограничен только размером зерна, которое заложат в машину. Процесс начинается с квадратной пластины. Камень растет в форме призмы, где верхняя часть слегка шире основания. За годы, прошедшие с момента обнаружения «той самой точки», компания Apollo училась выращивать алмазы все большего размера, отрезая верхушку от одного и используя ее как базу для другого алмаза. На сегодня компания способна вырабатывать 10-мм пластины, но за 5 лет планирует достичь 10 см. Карат стоит около $5.

Но вернемся в Высший алмазный совет. Я вытряхиваю камни от Apollo на стол. Ван Ройен неуверенно поднимает один из них длинным пинцетом и кладет под микроскоп. «Невероятно! Можно рассмотреть?» — спрашивает он. Я соглашаюсь оставить ему камни на ночь. Утром Ван Ройен выглядит уставшим. Он признает, что почти всю ночь изучал камни. «Думаю, что отличить их все же смогу: они слишком идеальны для натуральных алмазов. В природе все имеет изъяны. А у этого камня их практически нет», — резюмирует ученый. И добавляет на прощание: «В ваших руках нечто, чего нет больше ни у кого в Антверпене. Если хотите понять, насколько на самом деле важны эти камни, поговорите с Джимом Батлером из ВМФ США».

Алмазный Pentium

Джим Батлер возглавляет группу при ВМФ, которая занимается исследованием алмазов. Батлер изучал процесс CVD на протяжении 16 лет и повидал немало разочарований за этот срок. Но сегодня он — оптимист. Существовали три проблемы на пути к алмазному процессору. И похоже, все три готовы пасть. Во‑первых, алмазы считаются бешено дорогими из-за политики De Beers, которая не отпускает цены на рынке. Синтетические алмазы решат эту проблему. Во‑вторых, не было надежного источника больших и чистых камней. На ископаемые алмазы рассчитывать нельзя, так как невозможно обеспечить одинаковые электрические характеристики камней. Алмазы от Apollo решают и эту задачу. В-третьих, была проблема, над которой ломали головы материаловеды всего мира. Чтобы сделать микросхему, нужны полупроводники p- и n-типа. Алмаз — естественный изолятор, он не проводит электрический ток. Gemesis и Apollo смогли ввести в кристаллическую решетку алмаза бор, который создает нужный тип проводимости p-типа. Но до сих пор никто не смог создать в алмазе проводимость n-типа. При встрече со мной в Вашингтоне Батлер едва мог сдержать ликование. Он сообщил мне, что совершен прорыв — в июне 2003 года, совместно с учеными из Израиля и Франции, Батлер объявил о том, что найден способ инвертировать природную проводимость бора и создавать легированные бором алмазы n-типа. «Таким образом, мы получили p-n-пару. Другими словами, работающий полупроводник. На горизонте уже алмазный Pentium!» — радуется Батлер.

Однако ученого огорчают настроения в компьютерной индустрии США. Если не поторопиться, считает он, японцы и европейцы вырвутся вперед. И действительно, в разговорах с главными шишками компании Intel выяснилось, что они даже не знали о последних достижениях в области алмазных полупроводников. Кришнамурти Сумианат, один из боссов компании Intel, говорит, что освоение нового материала занимает около 10 лет, а в кремний вложено столько, что отказываться от него компания пока не намерена.

Но в один прекрасный день выхода у изготовителей микросхем не останется. Бернард Вунеш, профессор материаловедения в Массачусетсском технологическом институте, прямо говорит: «Если закон Мура не падет, микросхемы будут становиться все горячее и горячее. И кремний в какой-то момент просто потечет. Алмаз — вот решение проблемы».

26 мая 2015 года Международный геммологический институт (IGI) в Гонконге выдал сертификат на необычный рекордный бриллиант массой 10,02 карата, цвета E и чистоты VS1. Подобные драгоценные камни не такая уже и редкость в ювелирном мире, но уникальность данного случая состояла в том, что камень не был добыт из земных недр, а был огранен из 32-каратного кристалла синтетического алмаза, выращенного российской компанией New Diamond Technology (NDT). «Это далеко не первый наш рекорд, — говорит генеральный директор компании Николай Хихинашвили. — Предыдущий, 5-каратный, продержался всего два месяца».

Роман Колядин, директор по производству, показывает мне небольшой цех в одном из технопарков неподалеку от Сестрорецка. Цех безлюден, лишь полтора десятка гидравлических прессов стоят вдоль стен. Это и есть «месторождение» — внутри прессов, в условиях высоких температур и давлений, микрон за микроном растут абсолютно безупречные алмазы. На пультах управления контроллеров у каждого пресса отражаются текущие параметры, но Роман просит снимать картинку так, чтобы эти данные не попали в кадр: «Общие принципы синтеза алмазов хорошо известны и используются в промышленности уже более полувека. А вот детали режимов синтеза — одно из ноу-хау нашей компании». Я обращаю внимание на прецизионные кондиционеры, поддерживающие микроклимат в цеху с точностью до десятых долей градуса. Неужели в такой точности есть необходимость? «Помните, мы сразу же закрыли за собой дверь, чтобы избежать сквозняка? — объясняет Роман. — Небольшие отклонения в температурном режиме могут серьезно повлиять на качество алмаза, и не в лучшую сторону. А мы всегда стремимся получить идеальное качество».


Процесс выращивания монокристаллов алмаза при высокой температуре (около 1500 °C, с нужным градиентом) и высоком давлении (50−70 тыс. атм.). Гидравлический пресс обжимает специальный контейнер, внутри которого находится металлический расплав (железо, никель, кобальт и др.) и графит. На подложке размещается одна или несколько затравок — небольших кристаллов алмаза. Сквозь камеру протекает электрический ток, разогревающий расплав до нужной температуры. В этих условиях металл служит растворителем и катализатором процесса кристаллизации углерода на затравке в форме алмаза. Процесс выращивания одного крупного или нескольких более мелких кристаллов длится 12−13 суток.

Подсмотрели у природы

История синтетических алмазов начинается с конца XVIII века, когда ученые окончательно поняли, что этот камень по своему составу является углеродом. В конце XIX века были попытки превратить дешевые варианты углерода (уголь или графит) в твердый и блестящий алмаз. Заявления об удачном синтезе делали многие известные ученые, такие как французский химик Анри Муассан или британский физик Уильям Крукс. Позднее, правда, было установлено, что никто из них на самом деле успеха не добился, и первые синтетические алмазы были получены только в 1954 году в лабораториях компании General Electric.


Более дешевый процесс осаждения алмаза из ионизированной углеводородной газовой среды на подложке, разогретой до 600−700°С. Для выращивания монокристаллов с помощью CVD требуется алмазная монокристаллическая подложка, выращенная с помощью HPHT. При осаждении на кремний или поликристаллический алмаз получается поликристаллическая пластина, имеющая ограниченное применение в электронике и оптике. Скорость роста — от 0,1 до 100 мкм/ч. Толщина пластин обычно ограничена 2−3 мм, поэтому вырезанные из нее алмазы можно использовать в качестве ювелирных, но их размер, как правило, не превышает 1 карата.

Процесс, который использовали для синтеза в GE, был «подсмотрен» у природы. Считается, что земные алмазы образуются в мантии, на глубине в сотни километров под поверхностью Земли, при высокой температуре (около 1300°С) и высоком давлении (около 50 000 атм.), а затем выносятся на поверхность магматическими породами, такими как кимберлиты и лампроиты. Разработчики GE обжимали с помощью пресса ячейку, внутри которой находился графит и железо-никелево-кобальтовый расплав, выступавший в качестве растворителя и катализатора. Этот процесс был назван HPHT (High Pressure High Temperature — высокое давление, высокая температура). Именно этот способ позднее стал коммерческим для получения недорогих технических алмазов и алмазных порошков (сейчас их производят миллиардами карат в год), а в 1970-х с его помощью научились изготавливать и ювелирные камни массой до 1 карата, хотя и весьма среднего качества.


Две основные технологии промышленного получения синтетических алмазов — это HPHT и CVD. Существует еще ряд экзотических методик, таких как синтез нанокристаллов алмаза из графита при взрыве или экспериментальный метод получения микронных алмазов из суспензии частиц графита в органических растворителях под воздействием ультразвуковой кавитации.

Обходной путь

С 1960-х годов в мире идет разработка еще одного метода синтеза алмазов — CVD (Chemical Vapor Deposition, осаждение из газовой фазы). В нем алмазы осаждаются на подогреваемую подложку из углеводородного газа, который ионизируется с помощью СВЧ-излучения или разогревается до высокой температуры. Именно на этот метод синтеза в начале 2000-х стали возлагать большие надежды и небольшие стартапы, и крупные компании типа Element Six, входящей в группу De Beers.


До последнего времени метод HPHT оставался сильно недооцененным. «Когда мы несколько лет назад покупали оборудование, нам все в одни голос говорили, что промышленные прессы пригодны разве что для синтеза алмазных порошков», — говорит Николай Хихинашвили. Все ресурсы выделялись на разработку CVD, а технология HPHT считалась нишевой, никто из специалистов не верил, что с ее помощью можно выращивать достаточно крупные кристаллы. Однако, по словам Николая, специалистам компании удалось разработать собственную технологию синтеза, которая буквально произвела в отрасли эффект разорвавшейся бомбы. Несколько лет назад в отчете одной из геммологических лабораторий так и было написано: «Вес данного бриллианта составляет 2,30 карата! Подобная величина бриллианта еще до недавнего времени была гарантом его природного происхождения».


Огранка алмазов для получения сверкающих бриллиантов — процесс долгий и не слишком впечатляющий для непосвященного человека. И выращенные, и натуральные алмазы обрабатываются совершенно одинаковым образом.

Лучшие друзья девушек

«Мы, конечно, не единственные, кто выращивает алмазы крупнее 5−6 карат, — объясняет Николай. — Но все остальные подчиняются принципу «два из трех»: крупные, качественные, коммерчески выгодные. Мы первые, кто научился получать крупные кристаллы алмаза высокого качества по приемлемой стоимости. На 32 прессах мы можем выращивать около 3000 карат в месяц, и это камни очень высокого качества — алмазы цвета D, E, F и чистоты от чистейших IF до SI, в основном типа II. 80% нашей продукции — это ювелирные алмазы массой от 0,5 до 1,5 карата, хотя мы можем вырастить под заказ алмаз любого размера». В качестве доказательства Николай протягивает мне кристалл размером с 10-рублевую монету: «Вот это, например, 28 карат. Если огранить его, получится бриллиант карат в 15».


В начале 2000-х мировой алмазный монополист, компания De Beers, была сильно обеспокоена грядущим выходом на ювелирный рынок синтетических алмазов, опасаясь, что это может подорвать бизнес. Но время показало, что бояться нечего — синтетические алмазы занимают очень малую долю ювелирного рынка. К тому же за это время были разработаны методы исследований, которые позволяют достаточно уверенно идентифицировать выращенные алмазы. Признаками синтеза являются включения металла, в цветных алмазах можно рассмотреть секторы роста, к тому же HPHT, CVD и натуральные природные алмазы в УФ-лучах имеют разный характер люминесценции.


В зависимости от содержания азота алмазы относят к одному из двух основных типов. Алмазы типа I содержат до 0,2% азота, атомы которого расположены в узлах кристаллической решетки группами (Ia) или по одиночке (Ib). Тип I преобладает среди природных алмазов (98%). Как правило, такие камни редко бывают бесцветными. Алмазы типа IIa практически не содержат азота (менее 0,001%), среди природных камней их всего 1,8%. Еще реже (0,2%) встречаются безазотные алмазы с примесью бора (IIb). Атомы бора в узлах кристаллической решетки обуславливают их электропроводность и придают алмазам голубоватый оттенок.

«Как относятся потребители к выращенным алмазам? Хорошо, — говорит Николай, — особенно современная молодежь. Для них важно, что эти алмазы бесконфликтны и созданы людьми с помощью высоких технологий без вмешательства в природу. Ну и цена примерно вдвое ниже. Конечно, в сертификате написано, что камни выращенные, но ведь носят-то кольцо с бриллиантом, а не сертификат! А по физическим и химическим свойствам наши алмазы идентичны природным».


Пока что большую часть прибыли дает изготовление алмазов для ювелирного рынка. Однако, скорее всего, в ближайшие годы возникнет огромный спрос на выращенные алмазы и алмазные пластины для специальной оптики, микроэлектроники и других высокотехнологичных промышленных применений.

От украшений к промышленности

Ювелирные алмазы — это прибыльная часть бизнеса NDT, но завтрашний день принадлежит другому направлению. Технический директор компании NDT Александр Колядин любит говорить: «Если из алмаза уже ничего больше нельзя изготовить, сделай бриллиант». На самом деле наиболее перспективный рынок для крупных высококачественных синтетических алмазов — это промышленность. «Ни один природный алмаз не годится для использования в специальной оптике или электронике, — говорит Александр Колядин. — В них слишком много дефектов. А пластины, вырезанные из наших алмазов, имеют почти идеальную кристаллическую решетку. Некоторые исследовательские организации, которым мы предоставляем наши образцы для изучения, с трудом могут поверить в измеренные параметры — настолько они идеальны. И не просто отдельные образцы — мы можем уверенно обеспечить повторяемость характеристик, что для промышленности жизненно важно. Алмазы — это теплоотводы, это окна для специальной оптики и для синхротронов, и, конечно, силовая микроэлектроника, над созданием которой сейчас работают во всем мире».


«Промышленное направление пока составляет 20% нашего производства, но года через три мы планируем довести его до 50%, тем более что спрос быстро растет. Сейчас мы в основном делаем пластины 4 х 4 и 5 х 5 мм, вырезали по заказу несколько 7 х 7 и 8 х 8 мм и даже 10 х 10 мм, но это пока не массовое производство. Наша следующая цель, — говорит Николай Хихинашвили, — это перейти к изготовлению дюймовых алмазных пластин. Это тот минимум, который очень востребован в массовой электронной и оптической промышленности. Для получения таких пластин нужно вырастить кристалл алмаза массой в сто карат. Это наш план на ближайшее будущее». «На десятилетие?» — уточняю я. Николай с огромным удивлением смотрит на меня: «Десятилетие? Мы собираемся сделать это до конца года».

Алмазы привлекали человечество еще с давних времен. Необычайная красота этих камней стала причиной их использования для создания разных украшений. Однако позже люди выявили и другие полезные свойства алмазов - их уникальную прочность и твердость. Для обеспечения потребностей производства природа не создала много этого материала, поэтому у людей возникла идея - изготовлять алмазы искусственным путем.

Ценность алмазов

Алмаз считается уникальным камнем, обладающим редким сочетанием важных характеристик: сильная дисперсия, большая теплопроводность, твердость, оптическая прозрачность, износостойкость. Из-за своих физико-механических свойств алмазы высоко ценятся не только ювелирными экспертами, но и широко применяются в разных отраслях промышленности. Так, этот драгоценный камень используют в медицине, оптике и микроэлектронике.

Но в полной мере удовлетворить производственные потребности чистыми природными алмазами очень сложно и довольно дорого. По этой причине человечество начало задумываться над тем, как сделать искусственный алмаз. Синтетический камень должен был не только обладать важными свойствами настоящего алмаза, но и иметь более совершенную кристаллическую структуру, что очень важно для высокотехнологических областей.

Как возникли синтетические алмазы

Потребность в создании синтетического камня возникла очень давно. Но на практике осуществлена лишь в XX веке. До этого времени ученые не могли придумать технологии изготовления алмазов, хотя сумели установить, что они являются родственниками с обыкновенным углеродом. И через несколько десятков лет был создан первый синтетический алмаз, который получили из графита под воздействием высокой температуры и давления путем Именно с этого момента началось производство искусственных алмазов, которые сегодня применяются во многих элементах разного оборудования и инструментах.

Технологии производства алмазов

В наше время для получения синтетического камня используют несколько технологий, каждая из которых имеет свои особенности. Самая надежная, но наиболее дорогостоящая технология заключается в производстве алмаза из кристаллического углерода, который помещают для обработки в специальный пресс. Сначала на обрабатываемый материал мощными насосами подается вода. Таким образом создается Затем вода замерзает под действием хладагента, в результате чего давление увеличивается до 10 раз. На последнем этапе камера, в которой находится углерод, подключается к и подается на несколько долей секунды мощный ток. Под одновременным воздействием температуры и давления происходит преобразования графита в твердый камень. После этой фазы пресс размораживают, сливают жидкость и достают готовый искусственный алмаз.

Выращивание алмаза метаном

Еще используют более простую технологию производства синтетического камня - метод взрыва, который позволяет нарастить искусственный кристалл под действием метана. Очень часто производство искусственных алмазов происходит по двум технологиям. Дело в том, что в первом случае удается получить наивысший процентный выход алмазов, но они будут очень маленькими. Вторая технология позволяет существенно нарастить полученный синтетический камень с помощью обдувания метаном под воздействием температуры около 1100 ºС. Метод взрыва дает возможность получить искусственный алмаз любой величины.

Виды искусственных алмазов

В наше время производят много разновидностей синтетических алмазов: фианит, муассанит, страз, сегнетоэлектрик, рутил, фабулит, церуссит. Наиболее совершенной подделкой алмаза считается фианит, или кубик циркония. Он являет собой Поэтому многим неоднократно приходилось слышать, как называется искусственный алмаз цирконом. Хотя он не имеет никакого отношения к натуральному дорогостоящему камню.

Фианит характеризуется большой твердостью, высокой степенью дисперсии и преломления. Благодаря своим свойствам этот камень отлично имитирует настоящий алмаз и широко используется в ювелирной промышленности. Даже эксперты невооруженным глазом практически не могут отличить подделку от оригинала, поскольку они играют одинаково.

Самым качественным аналогом алмаза считается муассанит. У него такие же физические свойства, как у натурального камня, а по оптическим показателям он даже лучше. Единственный его недостаток - он уступает в твердости.

Особой популярностью пользуются стразы, изготовленные из свинцового стекла, состоящего из окиси свинца. Благодаря своему составу эти камни потрясающе играют на свету и имеют блеск, идентичный блеску алмазов.

Где применяются синтетические алмазы

Искусственный алмаз широко используется ювелирными заводами для изготовления роскошных украшений, которые не только выглядят красиво, но и весьма доступны по цене. Изделия с поддельными камнями смотрятся не хуже и отлично носятся.

Также выращивание искусственных алмазов является неотъемлемой частью современной промышленности. На их основе производятся сверхпрочные инструменты: алмазные пилы, полирующие диски, долота, сверла, скальпели, ножи, разные резцы и пинцеты. Техника и оборудование, изготовленные из алмазного материала, позволяют обрабатывать наиболее прочные сплавы и сырье. Кроме того, алмаз обеспечивает максимальную точность в машинах и приборах.

Как создать искусственный алмаз в домашних условиях

Некоторые эксперты утверждают, что вырастить синтетический алмаз возможно в домашних условиях. Но самостоятельное изготовление искусственных алмазов потребует немало усилий и затрат времени. Мы расскажем, как вырастить минерал из соли, внешне отдаленно напоминающий алмаз.

Итак, для создания такого камня понадобится поваренная соль, химическая посуда, чистый лист бумаги и лабораторный фильтр. Сначала следует приготовить маленький кристалл. Для этого нужно наполнить химический стакан на 1/5 часть солью, залить наполовину теплой водой и перемешать. Если она растворилась, значит, нужно досыпать еще немного. Соль нужно добавлять до тех пор, пока она не перестанет растворяться. Затем раствор профильтровать в другую посуду, в которой и будет расти камень, и накрыть бумагой. Все время нужно контролировать уровень раствора. Камень не должен оказаться в воздухе. Если раствор испарился, нужно приготовить новый и долить.

Люди, которые делали такие опыты, утверждают, что на протяжении недели домашний алмаз искусственный должен заметно подрасти.

Стоимость искусственного алмаза

В современном мире синтетические камни заняли отдельный сегмент рынка ювелирных украшений. Получение искусственных алмазов постоянно усовершенствуется. Ученые изобретают новые камни, которые мгновенно получают массовую популярность, а более старые утрачивают спрос и постепенно исчезают с рынка. Например, в середине XX века для имитации алмазов в украшения вставляли искусственный рутил. Затем его заменили на фианит. А в 90-х гг. все предыдущие вытеснил муассанит.

Цены на искусственный алмаз зависят от размера, огранки и технологии производства. Многие люди ошибочно считают, что синтетические камни - это обычное стекло, и не видят в них никакой ценности. Но на самом деле такие алмазы часто стоят немалых денег, а некоторые из них являются довольно редкими. Так, иные разновидности искусственного алмаза могут стоить больше, чем природные аналоги.

Среди синтетических алмазов наиболее популярными считаются фианиты разного цвета. Их средняя стоимость за карат в ограненном виде колеблется от 1 до 5 долларов США. А известный алмазный аналог муассанит стоит намного дороже - 70-150 долларов США за карат.

Значимым факторов формирования цены на камни является цвет. Так, стоимость алмаза желтого цвета составляет 40-50 долларов за 0,2 карата, но за камень оранжево-розовой окраски в зависимости от размера придется заплатить около 3000 долларов.

Мировые лидеры

В течение последних лет мировыми лидерами по производству синтетических камней считаются Китай, Япония, США и Россия. Наиболее активно развивает это направление Китай, постоянно изобретая новые технологии синтеза.

Лучшие статьи по теме